Absans Epilepsi Patofizyolojisinde Netrin-1’in Yeri

Ramazan Yüksel, Gönül Gürol, Zeynep Seçkin Akkılık, Yunus Yükselten, Sibel Sarı, Ahmet Emre Yeni, Sevil Arabacı, Didem Güneri, Fatih Ekici, Kadir Demircan
1.181 311

Öz


Amaç: Netrin-1 proteininin embriyonik gelişim boyunca akson yöneliminde ve hücre göçünde etkin rol oynadığı bilinmektedir. Ayrıca netrinin epilepsi patofizyolojisinde anormal sinaps gelişimi ve nöron göçüne katılabileceği de gösterilmiştir. Ancak absans epilepsinin gelişim sürecindeki etkisi henüz bilinmemektedir. Bu çalışmada Wistar Albino Glaxo/Rijswijk (WAG/Rij) sıçanların korteks ve talamus dokularındaki netrin ekspresyon düzeylerinin saptanması amaçlanmıştır.

Gereç ve Yöntem: Çalışmada genetik absans epilepsili 2 ve 6 aylık erkek WAG/Rij sıçanlar (n=14) ile epileptik olmayan 2 aylık ve 6 aylık erkek Wistar kontrol sıçanlar (n=14) kullanıldı. Anestezi altında dekapite edilen tüm sıçanların korteks ve talamus dokuları izole edildi. Gruplar arasındaki netrin-1 ekspresyonunun düzeyi standart teknikler kullanılarak Western Blot yöntemiyle tayin edildi ve dansiteler arasındaki farklar gruplar arasında karşılaştırıldı.

Bulgular: Elde edilen verilere göre; absans epilepsili WAG/Rij sıçanlar ile epileptik olmayan Wistar sıçanların beyin korteks ve talamus bölgelerinde netrin-1 ekspresyonu saptanmamıştır.

Sonuç: Bu çalışma, netrin-1 ekspresyonunun absans epilepsideki etkisinin Western Blot yöntemiyle araştırıldığı ilk çalışmadır. Elde edilen bulgulardan yola çıkılarak moleküler ve histolojik yöntemleri içeren kapsamlı çalışmalar planlanmalı, deneysel olarak elde edilen netrin-1 bulguları konfirme edilmelidir.

Anahtar Kelimeler: WAG/Rij sıçan, Absans epilepsi, Netrin-1


Tam metin:

PDF


DOI: http://dx.doi.org/10.17944/mkutfd.80181

Referanslar


Dreifuss FE. The epilepsies: clinical implications of the international classification. Epilepsia. 1990;31:S3-10.

Bambal G, Çakıl D, F E. Deneysel epilepsi modelleri. Journal Of Clinical & Experimental Investigations / Klinik Ve Deneysel Arastirmalar Dergisi. 2011;2(1):118-23.

Akman Ö, Karson A, Ateş N. Genetik Absans Epilepsili WAG/Rij Yavru Sıçanlarda Febril Nöbet Duyarlılığı. Epilepsi. 2005;11(1):11-5.

Coenen AM, Van Luijtelaar EL. Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behavior genetics. 2003;33(6):635-55.

Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Progress in neurobiology. 1998;55(1):27-57.

Deng H, Zheng W, Song Z. Genetics, molecular biology, and phenotypes of x-linked epilepsy. Molecular neurobiology. 2014;49(3):1166-80.

Perks A, Cheema S, Mohanraj R. Anaesthesia and epilepsy. British journal of anaesthesia. 2012;108:562-71.

Sbai O, Khrestchatisky M, Esclapez M, Ferhat L. Drebrin A expression is altered after pilocarpine-induced seizures: time course of changes is consistent for a role in the integrity and stability of dendritic spines of hippocampal granule cells. Hippocampus. 2012;22(3):477-93.

Shen K, Cowan CW. Guidance molecules in synapse formation and plasticity. Cold Spring Harbor perspectives in biology. 2010;2(4):a001842.

Flores C. Role of netrin-1 in the organization and function of the mesocorticolimbic dopamine system. Journal of psychiatry & neuroscience: JPN. 2011;36(5):296-310.

Akino T, Han X, Nakayama H, McNeish B, Zurakowski D, Mammoto A, et al. Netrin-1 promotes medulloblastoma cell invasiveness and angiogenesis, and demonstrates elevated expression in tumor tissue and urine of patients with pediatric medulloblastoma. Cancer research. 2014;74(14):3716-26.

Hakanen J, Duprat S, Salminen M. Netrin1 is required for neural and glial precursor migrations into the olfactory bulb. Developmental biology. 2011;355:101-14.

Goldman JS, Ashour MA, Magdesian MH, Tritsch NX, Harris SN, Christofi N, et al. Netrin-1 promotes excitatory synaptogenesis between cortical neurons by initiating synapse assembly. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2013;33(44):17278-89.

Pan Y, Liu G, Fang M, Shen L, Wang L, Han Y, et al. Abnormal expression of netrin-G2 in temporal lobe epilepsy neurons in humans and a rat model. Experimental neurology. 2010;224(2):340-6.

Demircan K, Topcu V, Takigawa T, Akyol S, Yonezawa T, et al. ADAMTS4 and ADAMTS5 knockout mice are protected from versican but not aggrecan or brevican proteolysis during spinal cord injury. BioMed Research International. 2014;2014:693746

Zhao CS, Overstreet-Wadiche L. Integration of adult generated neurons during epileptogenesis. Epilepsia. 2008;49(5):3-12.

Larner AJ. Axonal sprouting and synaptogenesis in temporal lobe epilepsy: possible pathogenetic and therapeutic roles of neurite growth inhibitory factors. Seizure. 1995;4(4):249-58.

Pereno GL, Beltramino CA. Timed changes of synaptic zinc, synaptophysin and MAP2 in medial extended amygdala of epileptic animals are suggestive of reactive neuroplasticity. Brain research. 2010;1328:130-8.

Chen F, Madsen TM, Wegener G, Nyengaard JR. Repeated electroconvulsive seizures increase the total number of synapses in adult male rat hippocampus. European neuropsychopharmacology. 2009;19(5):329-38.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.